If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+56x-640=0
a = 2; b = 56; c = -640;
Δ = b2-4ac
Δ = 562-4·2·(-640)
Δ = 8256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8256}=\sqrt{64*129}=\sqrt{64}*\sqrt{129}=8\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-8\sqrt{129}}{2*2}=\frac{-56-8\sqrt{129}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+8\sqrt{129}}{2*2}=\frac{-56+8\sqrt{129}}{4} $
| xx48+265=553 | | 3(x/2)=18 | | x+2x+3x+40x=4100 | | 6-2x+8x-(4-x)=-2(4x-24) | | -24/x=-5 | | 2(8)+3y=4 | | 2(x-2)=5x+3 | | (3x-12)=(4x-25) | | (5)2p+1÷25=125 | | -19(3x-17)/2=34 | | 5a+5=130 | | |2x|+8=47 | | (3x-12)=(4×-25) | | 13h+11=7h | | 16+3y=4 | | x+288=553 | | 11=5y-43 | | 1,440=2x+10x | | 2x+x+8=35 | | 7-2(x+3)=3x+11-5x | | 132=0.8(220-a) | | 2x+10x=1,440 | | -1x+8=3 | | 11x+18x-8+1=-3x+1-8 | | 0.20x+0.7=0.30x+5 | | 8x+26=4x-3 | | 3(2x-7)=4(x+2)+1 | | (x/5)-(x/9)=7 | | -2x^2-6x+4=0 | | X+24÷5=4+x÷4 | | 111=z | | 9-6x-7=15x=5 |